Dr. Ulf Gerth

Senior Scientist, Group Leader

Department for Microbial Physiology and Molecular Biology

Felix-Hausdorff-Straße 8 - 1. floor - room-nr.: 1.52
17489 Greifswald

phone: +49 (0)3834 420 5914
fax:      +49 (0)3834 420 5902
email:   ulf.gerth(at)uni-greifswald(dot)de

Curriculum Vitae
since 1996 Research and teaching scientist at the Institute of Microbiology with the main topic: “Stress physiology of Bacillus subtilis and Staphylococcus aureus” (Prof. M. Hecker)
1994 Postdoctoral work at the Institute of Microbiology at Univ. Greifswald (Prof. M. Hecker)
1993 Postdoctoral grant from the Ministry of Mecklenburg-Vorpommern („Cloning and characterization of a sigB-dependent stress gene from Bacillus subtilis“) and temporary stay at the Department of Genetics at the University of Bayreuth (Prof. W. Schumann)
1989-1993 PhD work in Plant Physiology at the Botanical Institute (Univ. Greifswald):”Investigations of the mechanism of breaking secondary dormancy states in Agrostemma githago L. seeds” (Doz. Dr. D. Bernhardt)
1989 Diploma thesis in Plant Physiology
1984 – 1989 Study of biology and chemistry for school teaching (licence for upper secondary education) at the Univ. Greifswald
1964 Year of birth
Research Interests

Protein quality control and Clp-dependent proteolysis in low GC Gram+ bacteria

During the last years we tried to understand and investigated how the activity of CtsR, the main regulator of quality control genes in low GC Gram+ bacteria, is regulated during heat and thiol-specific stress (Elsholz et al., 2009, 2010). Furthermore, we analyzed Clp-dependent proteolysis and followed the fate of many different proteins during stress and starvation in various clp mutant backgrounds (Gerth et al., 2008, Michalik et al., 2012, Feng et al., 2013).

  • Dittmar, D., A. Reder, R. Schlüter, K. Riedel, M. Hecker and U. Gerth. 2020.Complementation studies with human ClpP in Bacillus subtilis. Biochim Biophys Acta, 1867:118744. PMID: 32442436

  • Lilge, L., A. Reder, F. Tippmann, F. Morgenroth, J. Grohmann, D. Becher, K. Riedel, U. Völker, M. Hecker and U. Gerth. 2020.The involvement of the McsB arginine kinase in Clp-dependent degradation of the MgsR regulator in Bacillus subtilis” Frontiers in Microbiol., 11: 900. PMID: 32477307

  • Reder, A., S. Michalik and U. Gerth. 2018. “How to assess protein stability - Half-life determination of a regulatory protein in Bacillus subtilis” Methods Mol Biol 1841: 131-140. PMID: 30259484

  • Junker, S., S. Maaß, A. Otto, S. Michalik, F. Morgenroth, U. Gerth, M. Hecker and D. Becher. 2018.Spectral library based analysis of arginine phosphorylations in Staphylococcus aureus. Molecular & Cellular Proteomics 17: 335–348. PMID: 29183913

  • Schultz,D., R. Schlüter, U. Gerthand M. Lalk. 2017. Metabolic perturbations in a Bacillus subtilisclpP mutant during glucose starvation. Metabolites. 7: 63. PMID: 29186773

  • Gerth U, Krieger E, Zühlke D, Reder A, Völker U, Hecker M. Stability of Proteins Out of Service: the GapB Case of Bacillus subtilis. J Bacteriol. 2017;199(20)

  • Frees D, Gerth U, Ingmer H. Clp chaperones and proteases are central in stress survival, virulence and antibiotic resistance of Staphylococcus aureus. Int J Med Microbiol.2014 Mar;304(2):142-9. PMID: 24457183.
  • Stannek, L., K. Gunka, R. Care, U. Gerth, F. M. Commichau. 2015. Factors that mediate and prevent degradation of the inactive and unstable GudB protein in Bacillus subtilis. Frontiers in Microbiology 5:758 PMID: 25610436
  • Runde S, Molière N, Heinz A, Maisonneuve E, Janczikowski A, Elsholz AK, Gerth U, Hecker M, Turgay K. The role of thiol oxidative stress response in heat-induced protein aggregate formation during thermotolerance in Bacillus subtilis. Mol Microbiol.2014 Mar;91(5):1036-52. PMID: 24417481.
  • Skovager A, Larsen MH, Castro-Mejia JL, Hecker M, Albrecht D, Gerth U, Arneborg N, Ingmer H. Initial adhesion of Listeria monocytogenes to fine polished stainless steel under flow conditions is determined by prior growth conditions. Int J Food Microbiol.2013 Jul 1;165(1):35-42. PMID: 23685728.
  • Feng J, Michalik S, Varming AN, Andersen JH, Albrecht D, Jelsbak L, Krieger S, Ohlsen K, Hecker M, Gerth U, Ingmer H, Frees D. Trapping and proteomic identification of cellular substrates of the ClpP protease in Staphylococcus aureus. J Proteome Res.2013 Feb 1;12(2):547-58. PMID: 23253041.
  • Reder A, Pöther DC, Gerth U, Hecker M. The modulator of the general stress response, MgsR, of Bacillus subtilis is subject to multiple and complex control mechanisms. Environ Microbiol.2012 Oct;14(10):2838-50. PMID: 22812682.
  • Reder A, Höper D, Gerth U, Hecker M. Contributions of individual σB-dependent general stress genes to oxidative stress resistance of Bacillus subtilis. J Bacteriol.2012 Jul;194(14):3601-10. PMID: 22582280.
  • Michalik S, Bernhardt J, Otto A, Moche M, Becher D, Meyer H, Lalk M, Schurmann C, Schlüter R, Kock H, Gerth U, Hecker M. Life and death of proteins: a case study of glucose-starved Staphylococcus aureus. Mol Cell Proteomics.2012 Sep;11(9):558-70. PMID: 22556279.
  • Reder A, Albrecht D, Gerth U, Hecker M. Cross-talk between the general stress response and sporulation initiation in Bacillus subtilis – the σ(B) promoter of spo0E represents an AND-gate. Environ Microbiol.2012 Oct;14(10):2741-56. PMID: 22524514.
  • Elsholz AK, Turgay K, Michalik S, Hessling B, Gronau K, Oertel D, Mäder U, Bernhardt J, Becher D, Hecker M, Gerth U. Global impact of protein arginine phosphorylation on the physiology of Bacillus subtilis. Proc Natl Acad Sci U S A.2012 May 8;109(19):7451-6. PMID: 22517742.
  • Reder A, Gerth U, Hecker M. Integration of σB activity into the decision-making process of sporulation initiation in Bacillus subtilis. J Bacteriol.2012 Mar;194(5):1065-74. PMID: 22210769.
  • Elsholz AK, Hempel K, Michalik S, Gronau K, Becher D, Hecker M, Gerth U. Activity control of the ClpC adaptor McsB in Bacillus subtilis. J Bacteriol.2011 Aug;193(15):3887-93. PMID: 21622759.
  • Elsholz AK, Hempel K, Pöther DC, Becher D, Hecker M, Gerth U. CtsR inactivation during thiol-specific stress in low GC, Gram+ bacteria. Mol Microbiol.2011 Feb;79(3):772-85. PMID: 21208299.
  • Elsholz AK, Gerth U, Hecker M. Regulation of CtsR activity in low GC, Gram+ bacteria. Adv Microb Physiol.2010;57:119-44. PMID: 21078442.
  • Elsholz AK, Michalik S, Zühlke D, Hecker M, Gerth U. CtsR, the Gram-positive master regulator of protein quality control, feels the heat. EMBO J.2010 Nov 3;29(21):3621-9. PMID: 20852588.
  • Michalik S, Liebeke M, Zühlke D, Lalk M, Bernhardt J, Gerth U, Hecker M. Proteolysis during long-term glucose starvation in Staphylococcus aureus COL. Proteomics.2009 Oct;9(19):4468-77. PMID: 19743422.
  • Reder A, Höper D, Weinberg C, Gerth U, Fraunholz M, Hecker M. The Spx paralogue MgsR (YqgZ) controls a subregulon within the general stress response of Bacillus subtilis. Mol Microbiol.2008 Sep;69(5):1104-20. PMID: 18643936.
  • Gerth U, Kock H, Kusters I, Michalik S, Switzer RL, Hecker M. Clp-dependent proteolysis down-regulates central metabolic pathways in glucose-starved Bacillus subtilis. J Bacteriol.2008 Jan;190(1):321-31. PMID: 17981983.
  • Reeves A, Gerth U, Völker U, Haldenwang WG. ClpP modulates the activity of the Bacillus subtilis stress response transcription factor, sigmaB. J Bacteriol.2007 Sep;189(17):6168-75. PMID: 17586624.
  • Kirstein J, Dougan DA, Gerth U, Hecker M, Turgay K. The tyrosine kinase McsB is a regulated adaptor protein for ClpCP. EMBO J.2007 Apr 18;26(8):2061-70. PMID: 17380125.
  • Miethke M, Hecker M, Gerth U. Involvement of Bacillus subtilis ClpE in CtsR degradation and protein quality control. J Bacteriol.2006 Jul;188(13):4610-9. PMID: 16788169.
  • Kirstein J, Zühlke D, Gerth U, Turgay K, Hecker M. A tyrosine kinase and its activator control the activity of the CtsR heat shock repressor in B. subtilis. EMBO J.2005 Oct 5;24(19):3435-45. PMID: 16163393.
  • Kock H, Gerth U, Hecker M. The ClpP peptidase is the major determinant of bulk protein turnover in Bacillus subtilis. J Bacteriol.2004 Sep;186(17):5856-64. PMID: 15317791.
  • Kock H, Gerth U, Hecker M. MurAA, catalysing the first committed step in peptidoglycan biosynthesis, is a target of Clp-dependent proteolysis in Bacillus subtilis. Mol Microbiol.2004 Feb;51(4):1087-102. PMID: 14763982.
  • Gerth U, Kirstein J, Mostertz J, Waldminghaus T, Miethke M, Kock H, Hecker M. Fine-tuning in regulation of Clp protein content in Bacillus subtilis. J Bacteriol.2004 Jan;186(1):179-91. PMID: 14679237.
  • Petersohn A, Bernhardt J, Gerth U, Höper D, Koburger T, Völker U, Hecker M. Identification of sigma(B)-dependent genes in Bacillus subtilis using a promoter consensus-directed search and oligonucleotide hybridization. J Bacteriol.1999 Sep;181(18):5718-24. PMID: 10482513.
  • Petersohn A, Antelmann H, Gerth U, Hecker M. Identification and transcriptional analysis of new members of the sigmaB regulon in Bacillus subtilis. Microbiology.1999 Apr;145 ( Pt 4):869-80. PMID: 10220166.
  • Gerth U, Krüger E, Derré I, Msadek T, Hecker M. Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance. Mol Microbiol.1998 May;28(4):787-802. PMID: 9643546.
  • Gerth U, Wipat A, Harwood CR, Carter N, Emmerson PT, Hecker M. Sequence and transcriptional analysis of clpX, a class-III heat-shock gene of Bacillus subtilis. Gene.1996 Nov 28;181(1-2):77-83. PMID: 8973311.
  • Gerth, U. and D. Bernhardt. 1995. A comparison of the synthesis of DNA, RNA, and proteins in the embryos of after-ripened and thermo- or FR-dormant Agrostemma githago L. seeds. Seed Science Res. 5:87-97. doi.org/10.1017/S096025850000266X
  • Riethdorf S, Völker U, Gerth U, Winkler A, Engelmann S, Hecker M. Cloning, nucleotide sequence, and expression of the Bacillus subtilis lon gene. J Bacteriol.1994 Nov;176(21):6518-27. PMID: 7961402.
  • Bernhardt, D. and U. Gerth. 1994. Changes in the synthesis of some proteins during breaking of secondarily induced thermodormancy by respiration inhibitors (cyanide, azide) and BAP in embryos of Agrostemma githago L. seeds. Seed Science Res. 4: 415-420. doi.org/10.1017/S0960258500002464